Math 113-012, Exam 3
28-30 October 2010
D. G. Wright

Name
Row \qquad
Show work. Each problem or part of problem is worth 5 points.

1. Find the surface area when the line segment from $(4,0)$ to $(16,5)$ is rotated about the y - axis.
Use the formula for the surface area of a lampshade $S A=2 \pi \frac{R_{1}+R_{2}}{2} \ell$ where R_{1} and R_{2} are the two radii and ℓ is the slant height. In this case $R_{1}=4, R_{2}=16$ and $\ell=13$. The answer is 260π.
2. The curve $y=\sqrt{4-x^{2}},-1 \leq x \leq 1$, is rotated about the x-axis. Find the area of the resulting surface.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{-x}{\sqrt{4-x^{2}}} . \text { The surface area is } 2 \pi \int_{-1}^{1} \sqrt{4-x^{2}} \sqrt{1+\frac{x^{2}}{4-x^{2}}} d x \\
& =2 \pi \int_{-1}^{1} \sqrt{4-x^{2}} \sqrt{\frac{4}{4-x^{2}}} d x=4 \pi \int_{-1}^{1} d x=8 \pi
\end{aligned}
$$

3. Find the centroid of the following system consisting of a square and an isosceles triangle.

$$
\begin{aligned}
& A=9+3=12 \\
& M_{y}=-\frac{3}{2} \cdot 9+1 \cdot 3=-\frac{21}{2} \\
& M_{x}=\frac{3}{2} \cdot 9+1 \cdot 3=\frac{33}{2} \\
& \bar{x}=\frac{M_{y}}{A}=-\frac{7}{8} \\
& \bar{y}=\frac{M_{x}}{A}=\frac{11}{8}
\end{aligned}
$$

4. Find the centroid of the region between the two triangles in the $x-y$ plane. You may use either Hint 1 or Hint 2. Hint 1: The area can be found as the difference of two areas. In a similar manner, the moment about the x-axis can be found as the difference of two moments. Hint 2: Use the Theorem of Pappus.

$$
\begin{aligned}
& A=4-1=3 \\
& M_{x}=\frac{2}{3} 4-\frac{1}{3} 1=\frac{7}{3} \\
& \bar{y}=\frac{M_{x}}{A}=\frac{7}{9} \\
& \bar{x}=0 \text { by symmetry }
\end{aligned}
$$

5. Evaluate the following limits if they exist. If the limit does not exist, so state.
(a) $\lim _{n \rightarrow \infty} \frac{1}{n}=\square \quad 0$
(b) $\lim _{n \rightarrow \infty}\left(1+\frac{5}{n}\right)^{n}=$ \qquad
(c) $\lim _{n \rightarrow \infty} \frac{\sqrt{n^{5}+2 n^{3}+5}}{n^{3}}=$ \qquad
6. Define $\sum_{n=1}^{\infty} a_{n}=L$. Let $S_{n}=a_{1}+a_{2}+a_{3}+\cdots a_{n}$. Then $\sum_{n=1}^{\infty} a_{n}=L$ means that $\lim _{n \rightarrow \infty} S_{n}=L$.
7. What is the hydrostatic force on the given plate whose top is at the surface of the water if the density of water is $\delta \mathrm{lbs} / \mathrm{ft}^{3}$?

Depth of centroid of 2×4 rectangle $=1 \mathrm{ft}$.
Depth of centroid of 2×3 rectangle $=\frac{7}{2} \mathrm{ft}$.
Depth of centroid of triangles $=3 \mathrm{ft}$.
Force $=\left[1 \cdot 8+\frac{7}{2} \cdot 6+3 \cdot\left(\frac{3}{2}+\frac{3}{2}\right)\right] \delta \mathrm{lbs}$ $=38 \delta \mathrm{lbs}$
8. What is the hydrostatic force on a 2 foot by 2 foot square diamond aquarium window whose top is 2 feet below the surface of the water if the density of water is $\delta \mathrm{lbs} / \mathrm{ft}^{3}$?

Diagonal of square $=2 \sqrt{2} \mathrm{ft}$. Centroid of square is $2+\sqrt{2} \mathrm{ft}$ below the surface. Area of square $=4 \mathrm{ft}^{2}$. Force $=(2+\sqrt{2}) \cdot 4 \delta \mathrm{lbs}=(8+4 \sqrt{2}) \delta \mathrm{lbs}$
9. If $0<r<1$, prove that $\lim _{n \rightarrow \infty} r^{n}=0$. Multiply each side of the inequality by r^{n} to get $0<r^{n+1}<r^{n}$. So the sequence r^{n} is decreasing and bounded below by 0 . So by a theorem, it must converge to some number L. But $\lim _{n \rightarrow \infty} r^{n+1}=L$ and $\lim _{n \rightarrow \infty} r^{n+1}=r L$. So $r L=L$. Since $r \neq 1$, we must have $L=0$.
10. Find the fifteenth partial sum S_{15} for the series $\sum_{n=1}^{\infty}(-1)^{n+1}$.

An even partial sum has the same number of $1^{\prime} s$ and $-1^{\prime} s$ so the partial sum is 0 . An odd partial sum has one more $=1$ than -1 so the partial sum is 1 .
11. Determine whether each series converges or diverges. If it converges, give its sum.
(a) $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^{2}+1}}=$ \qquad
(b) $\sum_{n=1}^{\infty} \frac{2}{4 n^{2}-1}=\square$ Use partial sum decomposition to get $\frac{2}{4 n^{2}-1}=$ Which is seen to be $\frac{1}{2 n-1}-\frac{1}{2 n+1}$. The series is now seen to be telescoping $1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\cdots$ its sum is 1 .
(c) $\sum_{n=1}^{\infty} \frac{2^{n+1}}{3^{n}}=$

This is a geometric series with first term $\frac{4}{3}$ and ratio $\frac{2}{3}$. The sum is $\frac{\frac{4}{3}}{1-\frac{2}{3}}=4$
12. Determine whether each series converges or diverges. State any convergence/divergence tests you use. For the Integral Test, evaluate the appropriate integral. For the Comparison Test or Limit Comparison Test give the appropriate comparison series.
(a) $\sum_{n=1}^{\infty} n e^{-n^{2}}$ Converges by Integral Test or Ratio Test. Check details.
(b) $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3}}$ Converges by Integral Test or by Comparison Test with the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ since $\ln n<n$ for large n. Check details.
(c) $\sum_{n=1}^{\infty} \frac{n^{2}+3 n+1}{n^{3}+2 n^{2}+n+1}$ Diverges by Limit Comparison Test with the harmonic series. Check details.
(d) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{3}+2 n^{2}+n+1}}$ Converges by either the Limit Comparison Test or the Comparison Test with the series $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$. Check details.
(e) $\sum_{n=1}^{\infty} \frac{\sin \left(\frac{1}{n}\right)}{\sqrt{n}}$ Converges by Limit Comparison test with the series $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$. Check details.

