Math 113-012, Exam 3	Name
28-30 October 2010	Row
D. G. Wright	Show work. Each problem or part of problem is worth 5 points.

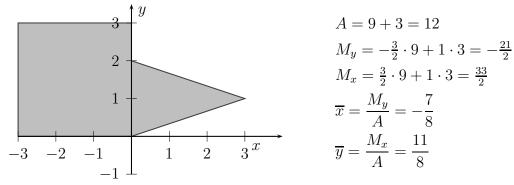
1. Find the surface area when the line segment from (4,0) to (16,5) is rotated about the y- axis.

Use the formula for the surface area of a lampshade $SA = 2\pi \frac{R_1 + R_2}{2}\ell$ where R_1 and R_2 are the two radii and ℓ is the slant height. In this case $R_1 = 4$, $R_2 = 16$ and $\ell = 13$. The answer is 260π .

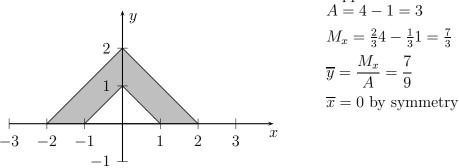
2. The curve $y = \sqrt{4 - x^2}, -1 \le x \le 1$, is rotated about the *x*-axis. Find the area of the resulting surface.

$$\frac{dy}{dx} = \frac{-x}{\sqrt{4-x^2}}.$$
 The surface area is $2\pi \int_{-1}^{1} \sqrt{4-x^2} \sqrt{1+\frac{x^2}{4-x^2}} dx$
$$= 2\pi \int_{-1}^{1} \sqrt{4-x^2} \sqrt{\frac{4}{4-x^2}} dx = 4\pi \int_{-1}^{1} dx = 8\pi$$

3. Find the centroid of the following system consisting of a square and an isosceles triangle.



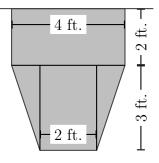
4. Find the centroid of the region between the two triangles in the x-y plane. You may use either Hint 1 or Hint 2. Hint 1: The area can be found as the difference of two areas. In a similar manner, the moment about the x-axis can be found as the difference of two moments. Hint 2: Use the Theorem of Pappus.



5. Evaluate the following limits if they exist. If the limit does not exist, so state.

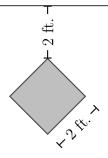
(a)
$$\lim_{n \to \infty} \frac{1}{n} = \underline{\qquad} 0$$
(b)
$$\lim_{n \to \infty} \left(1 + \frac{5}{n}\right)^n = \underline{\qquad} e^5$$
(c)
$$\lim_{n \to \infty} \frac{\sqrt{n^5 + 2n^3 + 5}}{n^3} = \underline{\qquad} 0$$

- 6. Define $\sum_{\substack{n=1\\n\to\infty}}^{\infty} a_n = L$. Let $S_n = a_1 + a_2 + a_3 + \cdots + a_n$. Then $\sum_{n=1}^{\infty} a_n = L$ means that $\lim_{n\to\infty} S_n = L$.
- 7. What is the hydrostatic force on the given plate whose top is at the surface of the water if the density of water is $\delta \text{ lbs/ft}^3$? Depth of centroid of 2×4 rectangle = 1ft.



Depth of centroid of 2 × 1 rectangle = $\frac{7}{2}$ ft. Depth of centroid of 2 × 3 rectangle = $\frac{7}{2}$ ft. Depth of centroid of triangles = 3 ft. Force = $[1 \cdot 8 + \frac{7}{2} \cdot 6 + 3 \cdot (\frac{3}{2} + \frac{3}{2})]\delta$ lbs = 38δ lbs

8. What is the hydrostatic force on a 2 foot by 2 foot square diamond aquarium window whose top is 2 feet below the surface of the water if the density of water is δ lbs/ft³?



Diagonal of square = $2\sqrt{2}$ ft. Centroid of square is $2 + \sqrt{2}$ ft below the surface. Area of square = 4 ft². Force = $(2 + \sqrt{2}) \cdot 4\delta$ lbs = $(8 + 4\sqrt{2})\delta$ lbs

- 9. If 0 < r < 1, prove that $\lim_{n \to \infty} r^n = 0$. Multiply each side of the inequality by r^n to get $0 < r^{n+1} < r^n$. So the sequence r^n is decreasing and bounded below by 0. So by a theorem, it must converge to some number L. But $\lim_{n \to \infty} r^{n+1} = L$ and $\lim_{n \to \infty} r^{n+1} = rL$. So rL = L. Since $r \neq 1$, we must have L = 0.
- 10. Find the fifteenth partial sum S_{15} for the series $\sum_{n=1}^{\infty} (-1)^{n+1}$.

 ∞

An even partial sum has the same number of 1's and -1's so the partial sum is 0. An odd partial sum has one more = 1 than -1 so the partial sum is 1.

11. Determine whether each series converges or diverges. If it converges, give its sum.

(a)
$$\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^2 + 1}} =$$
 _____ Diverges because the terms go to $1 \neq 0$.

(b) $\sum_{n=1}^{\infty} \frac{2}{4n^2 - 1} =$ Use partial sum decomposition to get $\frac{2}{4n^2 - 1} =$ Which is seen to be $\frac{1}{2n - 1} - \frac{1}{2n + 1}$. The series is now seen to be telescoping $1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \cdots$ its sum is 1.

(c)
$$\sum_{n=1}^{\infty} \frac{2^{n+1}}{3^n} =$$

This is a geometric series with first term $\frac{4}{3}$ and ratio $\frac{2}{3}$. The sum is $\frac{\frac{4}{3}}{1-\frac{2}{3}} = 4$

12. Determine whether each series converges or diverges. State any convergence/divergence tests you use. For the Integral Test, evaluate the appropriate integral. For the Comparison Test or Limit Comparison Test give the appropriate comparison series.

(a)
$$\sum_{n=1}^{\infty} ne^{-n^2}$$
 Converges by Integral Test or Ratio Test. Check details

- (b) $\sum_{n=1}^{\infty} \frac{\ln n}{n^3}$ Converges by Integral Test or by Comparison Test with the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ since $\ln n < n$ for large n. Check details.
- (c) $\sum_{n=1}^{\infty} \frac{n^2 + 3n + 1}{n^3 + 2n^2 + n + 1}$ Diverges by Limit Comparison Test with the harmonic series. Check details.
- (d) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 + 2n^2 + n + 1}}$ Converges by either the Limit Comparison Test or the Comparison Test with the series $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$. Check details.
- (e) $\sum_{n=1}^{\infty} \frac{\sin(\frac{1}{n})}{\sqrt{n}}$ Converges by Limit Comparison test with the series $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$. Check details.